Unconscious Errors Enhance Prefrontal-Occipital Oscillatory Synchrony
نویسندگان
چکیده
The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signaled Go/No-Go task in which half of the No-Go cues were masked and thus not consciously perceived, response errors enhanced tonic (i.e., over 1-2 s) oscillatory synchrony between MFC and occipital cortex (OCC) leading up to and during the subsequent trial. Spectral Granger causality analyses demonstrated that MFC --> OCC directional synchrony was enhanced during trials following both conscious and unconscious errors, whereas transient stimulus-induced occipital --> MFC directional synchrony was independent of errors in the previous trial. Further, the strength of pre-trial MFC-occipital synchrony predicted individual differences in task performance. Together, these findings suggest that synchronous neurophysiological oscillations are a plausible mechanism of MFC-driven cognitive control that is independent of conscious awareness.
منابع مشابه
Cross-frequency dynamics of neuromagnetic oscillatory activity: two mechanisms of emotion regulation.
Hemodynamic and electromagnetic neuroimaging suggests a sequence of intraregional and interregional activity during emotion processing. Oscillatory activity within trials may offer insight into neural mechanisms involved in this process. MEG was measured in 24 subjects during passive viewing of neutral and unpleasant pictures and emotion regulation by cognitive reappraisal. Regulation prompted ...
متن کاملSynchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex
Intelligent behavior requires acquiring and following rules. Rules define how our behavior should fit different situations. To understand its neural mechanisms, we simultaneously recorded from multiple electrodes in dorsolateral prefrontal cortex (PFC) while monkeys switched between two rules (respond to color versus orientation). We found evidence that oscillatory synchronization of local fiel...
متن کاملUnconscious Learning versus Visual Perception: Dissociable Roles for Gamma Oscillations Revealed in MEG
Oscillatory synchrony in the gamma band (30-120 Hz) has been involved in various cognitive functions including conscious perception and learning. Explicit memory encoding, in particular, relies on enhanced gamma oscillations. Does this finding extend to unconscious memory encoding? Can we dissociate gamma oscillations related to unconscious learning and to conscious perception? We investigate t...
متن کاملThe Effect of Repetitive Transcranial Magnetic Stimulation on Gamma Oscillatory Activity in Schizophrenia
BACKGROUND Gamma (γ) oscillations (30-50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ) during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive method to ...
متن کاملVisual Grouping and the Focusing of Attention Induce Gamma-band Oscillations at Different Frequencies in Human Magnetoencephalogram Signals
Neural oscillatory synchrony could implement grouping processes, act as an attentional filter, or foster the storage of information in short-term memory. Do these findings indicate that oscillatory synchrony is an unspecific epiphenomenon occurring in any demanding task, or that oscillatory synchrony is a fundamental mechanism involved whenever neural cooperation is requested? If the latter hyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2009